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We discuss ground-state projector simulations of a modified two-dimensional S=1 /2 Heisenberg model in
the valence bonds basis. Tuning matrix elements corresponding to the diagonal and off-diagonal terms in the
quantum dimer model, we show that there is a quantum phase transition from the antiferromagnet into a
columnar valence-bond solid �VBS�. There are no signs of discontinuities, suggesting a continuous or very
weak first-order transition. The Z4-symmetric VBS order parameter exhibits an emergent U�1� symmetry as the
phase transition is approached. We extract the associated length-scale governing the U�1�−Z4 cross-over inside
the VBS phase.
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A valence-bond solid �VBS� is a magnetically disordered
state of a quantum spin system in which translational sym-
metry is spontaneously broken due to the formation of a
pattern of strong and weak bond correlations �Si ·S j� �where
i , j are nearest-neighbor sites�. Using an SU�N� generaliza-
tion of the Heisenberg model, Read and Sachdev showed that
a fourfold degenerate columnar VBS ground state can be
expected on the square lattice.1 Numerical studies have
found evidence for such VBS states in frustrated SU�2� sym-
metric systems,2 but because of technical limitations, in par-
ticular the sign problem in quantum Monte Carlo �QMC�
simulations,3 the nature of the strongly frustrated ground
state remains controversial.4 Another challenging issue is
how the ground state evolves from an antiferromagnet �AF�
into a VBS. According to the “Landau rules,” one would
expect a direct transition between these states to be
first-order,5 because unrelated symmetries are broken. There
could also be an intervening disordered �spin liquid� phase6

or a coexistence region. Senthil et al. recently suggested an
alternative scenario for a generic continuous transition based
on a “deconfined” quantum critical point �DQCP� associated
with spinon deconfinement.7,8 This proposal has generated
significant interest, as well as controversy. An extended
“J-Q” Heisenberg model has been introduced,9 which is not
frustrated, in the standard sense, but includes a four-spin in-
teraction which destroys the AF order and leads to a VBS
ground state. This model is amenable to large scale QMC
studies, which show scaling behavior consistent with a
DQCP.9,10 Other studies dispute these findings, however.11

Numerical studies of the proposed field theory describing the
deconfined quantum critical point are also subject to conflict-
ing interpretations.12,13 Further studies of AF-VBS transitions
is thus called for.

In this Brief Report, we address an important aspect of the
VBS state and the AF-VBS transition, namely, the nature of
the quantum fluctuations of the VBS order parameter. In the
DQCP theory, the Z4 symmetric lattice-imposed structure of
the VBS is a dangerously irrelevant, and, as a consequence,
U�1� symmetry emerges close to the DQCP.7 A U�1� sym-
metric VBS order parameter was indeed confirmed in the
studies of the J-Q model,9–11 and also in simulations of the
SU�N� Heisenberg model with N�4.14 However, the ex-
pected cross-over into a Z4 symmetric distribution inside the
VBS phase was not observed. This can be interpreted as the

lattice sizes studied so far being smaller than the spinon con-
finement length scale �, which governs the U�1�−Z4
cross-over.15 � should diverge as �d

a, where �d is the dimer
�VBS� correlation length and a�1,7 and for a finite lattice
with L�� the distribution should be U�1� symmetric. The
models studied so far have a rather weak VBS order, and
hence �d is large, which likely makes it difficult to satisfy
L��d

a. The exponent a is not known.
Here, we introduce a way to generate much more robust

VBS states, with which we can study the U�1�−Z4 crossover
already on small lattices. Our approach is based on a ground-
state projector QMC method operating in the valence bond
�VB� basis.16–18 Starting from some trial state ���, the
ground state of a Hamiltonian H can be obtained by applying
a high power of H; ��0��Hm���. Consider the S= 1

2 Heisen-
berg model written as a sum of singlet projection operators
Hij,

H = − J�
�i,j�

Hij, Hij =
1

4
− Si · S j , �1�

where �i , j� denotes nearest neighbors on a square lattice of
N=L2 sites. In the VB basis the trial state ��� is a superpo-
sition of singlet products ��a1 ,b1�¯ �aN/2 ,bN/2��, where
�a ,b�= �↑a↓b−↓a↑b� /�2 with a and b sites on different sub-
lattices. We here use the amplitude-product state of Liang et
al.19,20 A singlet projector can have two different effects upon
acting on a VB state,

Hab�¯�a,b��c,d�¯� = 1�¯�a,b��c,d�¯� , �2�

Had�¯�a,b��c,d�¯� =
1

2
�¯�a,d��c,b�¯� . �3�

These rules form the basis of the VB projector method,16–18

where Hm is expanded in its strings of m singlet projectors.
Expectation values of operators O are obtained by
importance-sampling the VBs and operator strings produced
when expanding

�O� =
���HmOHm���
���HmHm���

. �4�

For details of these procedures we refer to Refs. 16 and 17.
In Ref. 9, the J-Q model, which includes a four-spin cou-
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pling consisting of terms −QHijHkl, with ij and kl site pairs
on two opposite edges of a plaquette, was studied using the
VB projector method. The Q term naturally favors singlet
formation on plaquettes, and this was shown to lead to a
VBS state when J /Q� �J /Q�c, �J /Q�c	0.04. Here, we in-
troduce another mechanism leading to VBS formation. We
define an effective Hamiltonian based on the Heisenberg
model in the VB basis, by changing the diagonal matrix el-
ement 1 in Eq. �2� and the off-diagonal matrix element 1

2 in
Eq. �3� to Qv and 1

2Qk, respectively, for Hab acting on VBs on
opposite edges of the same plaquette. These operations, il-
lustrated in Fig. 1, correspond to the kinetic and potential-
energy terms of the quantum dimer model.21 There, however,
the Hilbert space consists of only dimers connecting nearest-
neighbor sites, whereas we here keep the full space of VBs
connecting any pair of sites on different sublattices. In the
quantum dimer model, the dimer configurations are also con-
sidered as orthogonal states, whereas we here keep the sin-
glet nature of the VBs, whence the states are non-orthogonal.
The nonorthogonality may at first sight seem problematic,
because when Qv ,Qk�1 the Hamiltonian is non-Hermitian.
We therefore refer to it as an pseudo Hamiltonian in the VB
basis. However, in spite of this, the states generated by the
projection procedure �with the sampling weights modified by
the presence of the factors Qv and Qk, and taking the power
m large enough for convergence to the m=� limit� are com-
pletely well-defined SU�2� invariant quantum states. We can
thus think of the modified projection technique as a means of
generating a family of states parametrized by Qv and Qk.
Moreover, there must be some corresponding Hamiltonians,
defined in terms of the standard spin operators Si, which
have these states as their ground states. Although we are not
able to write down these Hamiltonians �which likely contain
multispin interactions, possibly long ranged�, it is still useful
to study the evolution of the states as a function of Qv and
Qk. Here we will consider two cases; Qv	1, Qk=1 and
Qk	1, Qv=1, which we refer to as the Qv and Qk models,
respectively. Both these models indeed undergo AF-VBS
transitions.

We calculate the square of the staggered magnetization,
M2= �M ·M�, where

M =
1

N
�
x,y

�− 1�x+ySx,y �5�

is the operator for the AF order parameter. The columnar
VBS operator for x-oriented bonds is

Dx =
1

N
�
x,y

�− 1�xSx,y · Sx+1,y , �6�

and Dy is defined analogously. We calculate the squared or-
der parameter, D2= �Dx

2+Dy
2�, and the distribution P�Dx ,Dy�

as in Ref. 9. Results for these quantities and the correspond-
ing spin and dimer correlation lengths �s �spin� and �d �de-
fined through the momentum-space second moments of the
spin and dimer correlation functions� indicate coinciding
critical points for the AF and VBS order parameters. In the
following, we first discuss the finite size scaling behavior of
the Qv model.

We define a reduced coupling q=Qv−Qv
c. Then, if there

indeed is a single critical point, there is AF order for q�0
and VBS order for q�0, and in the thermodynamic limit the
squared spin and dimer order parameters should scale as
M2��−q�2
s and D2�q2
d inside the respective phases. To
extract Qv

c and the exponents, we use standard finite-size
scaling forms,

M2 = L−�s�1 + aL−��Fs�qL1/� , �7�

D2 = L−�d�1 + aL−��Fd�qL1/� , �8�

�s,d = L�1 + aL−��Gs,d�qL1/� , �9�

where �s=2
s /, �d=2
d /, and the correlation length ex-
ponent  is the same for all the quantities �as also required in
the DQCP theory�. The scaling functions Fs,d and Gs,d are
extracted in the standard way by adjusting the critical point
and exponents to collapse finite-size data onto common
curves. Since our lattices are not very large, L�24, a sub-
leading correction helps significantly to scale the data. In all
cases we find that �=1 works well �the prefactor a is
quantity-dependent, however�.

Results are shown in Figs. 2 and 3. All the data can be
scaled with Qv

c =1.400�5�, =0.78�3�, 
s=0.27�2�, and 
d
=0.68�3�. Here,  and 
d are approximately the same, within
error bars, as in the J-Q model,9 while 
s is much smaller �in
the J-Q model 
s�0.6 was found9,10�. The range of system
sizes is quite small and we cannot, of course, exclude drifts
in the exponents for larger lattices, nor a very weakly first-
order transition.

Turning to the Qk model, it is more demanding computa-

Qk/2(b)

Qv(a)

FIG. 1. �Color online� Diagonal �a� and off-diagonal �b� singlet
projection operations �indicated by the arches� on VB pairs on a
plaquette. The matrix elements �2� and �3� corresponding to these
operations are multiplied by Qv and Qk, respectively. In �a�, the
factor is 2Qv if there is a VB also on the left side of the operator.
For all other bond configurations the matrix elements remain those
in Eqs. �2� and �3�.
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FIG. 2. �Color online� Finite-size scaling of the spin and dimer
correlation lengths. The inset shows � /L versus the coupling, with
crossing points tending toward Qv

c 	1.40.
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tionally, because the critical point is rather large, Qk
=2.5�1�, leading to a lower acceptance rate in simulations
close to the transition than for the Qv model. We can there-
fore not reach the same level of precision for the exponents.
The results are nevertheless consistent with a continuous
transition and exponents similar to those of the Qv model.

Unfortunately, we cannot easily calculate the dynamic ex-
ponent z with the present approach, because it requires ac-
cess to the triplet sector, e.g., to extract the spin gap �
�L−z. Our model is explicitly defined only in the singlet
sector. While one can extend the VB basis and the projection
scheme to triplets,16,17 the extension of the Qv and Qk models
to this sector is not unique, and z may depend on how that is
accomplished. We could in principle calculate gaps in the
singlet sector, but this is much more complicated.

Our main interest in studying the Qv and Qk models is in
the distribution P�Dx ,Dy� of the columnar dimer order pa-
rameter. While this is a basis dependent quantity, it still pro-
vides direct information on the order parameter symmetry. In
a columnar symmetry-broken VBS state, we expect a distri-
bution with a single peak located on the x or y axis, while in
a plaquette state the peak should be on one of the 45° rotated
axes. In simulations that do not break the symmetry, we ex-
pect four-fold symmetric distributions, with peak locations
corresponding to the type of VBS as above. In previous stud-
ies of VBS states, only ring-shaped distributions were
observed,9–11,14 however, which can be taken as a confirma-
tion of the predicted7 emergent U�1� symmetry close to a
DQCP. One would then expect the fourfold symmetry to ap-
pear for large systems, L��, inside the VBS phase, as has

been observed explicitly in a classical XY model including
dangerously irrelevant Zq �q	4� perturbations.15 With the
Qv and Qk models, we can reach further inside the VBS
phases than in the previously studied quantum spin systems,
and, as seen in Fig. 4, we can indeed follow the evolution
from U�1� to Z4 symmetric distributions as a function of the
coupling constants even for modest system sizes. The peak
locations correspond to columnar VBS states for both mod-
els, although the shapes of the distributions are qualitative
different in other respects. The previously observed ring-
shaped distributions9,14 are more reminiscent of those for the
Qk model.

To study the length scale � which governs the Z4−U�1�
crossover �and is related to the scaling dimension of a dan-
gerously irrelevant field15� we define an order parameter D4
which is sensitive to the Z4 anisotropy,

D4
2 = 


−1

1

dDx

−1

1

dDyP�Dx,Dy�rxy
2 cos�4��

= 

0

1

dr

0

2�

d�r3P�r,��cos�4�� , �10�

where rxy = �Dx
2+Dy

2�1/2. This order parameter should obey the
finite-size scaling form;15,22

D4
2 = L−�dF4�qL1/a4� , �11�

with a4�1. The data can be scaled with a4=1.10�4�, as
shown in Fig. 5 �where we use the same Qv

c, �d, and  as in
Figs. 2 and 3�. Here, the error bars on the raw data, as seen in
the inset, are much larger than for D2, reflecting that slow
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FIG. 3. �Color online� Finite size scaling of the squared AF �top
panel� and VBS �bottom panel� order parameters of the Qv model.
The insets show the unscaled data.

FIG. 4. �Color online� VBS order=parameter distributions. The
left column is for Qk=1 and Qv=1.44, 1.48, and 1.54 �from top� on
12�12 lattices. The right column is for Qv=1 and Qk=2.5, 3.5, and
5.0 �from top� on 16�16 lattices.
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angular fluctuations of the VBS order parameter in the simu-
lations �which do not affect the rotationally-invariant D2�. In
the classical XY model with Z4 perturbation15,23 a4	1.1,
and, thus, the VBS of the Qv model exhibits similar angular
fluctuations. For the Qk model, the error bars of the D4 order
parameter are much larger and we cannot reliably extract the
exponent a4 in this case.

To summarize, by tuning specific matrix elements in
valence-bond QMC simulations, we are able to study a fam-
ily of SU�2� symmetric states undergoing AF-VBS phase
transitions. Unlike previous studies of quantum spin models

with VBS states, we are able to observe both the Z4 symme-
try of the order-parameter distribution �which arises from the
nature of the VBS on the square lattice� deep inside the VBS
phase and the cross-over into an emergent U�1� symmetry
upon approaching the transition point. We extracted the
length scale �, which is found to scale as a power of the
correlation length, ���a, with a�1, in accord with general
expectations for a dangerously irrelevant perturbation �which
here is associated with the lattice-imposed fourfold VBS
symmetry�.15,22 The critical exponents found here are differ-
ent from those of the J-Q model,9,10 which is the best candi-
date so far for a realization of the DQCP. While our present
results are, therefore, most likely not directly related to the
particular DQCP theory of Senthil et al.,7 they point to emer-
gent U�1� symmetry as a generic feature of near-critical VBS
states.

Signs of Z4 symmetry in the VBS order parameter were
also recently reported for SU�N� symmetric Heisenberg
models with large N.24 The U�1�−Z4 cross-over was not ad-
dressed, but could be analyzed with the methods used here.
Very recently, the cross-over was observed in generalized
J-Q model and the corresponding exponent a4 was
extracted.25 It is marginally larger �barely outside the error
bars� than the value found here.
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FIG. 5. �Color online� Finite-size scaling of anisotropy order
parameter. The inset shows the unscaled data.
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